Pregabalin antagonizes copper-induced toxicity in the brain: in vitro and in vivo studies.
نویسندگان
چکیده
BACKGROUND Copper plays key roles in brain metabolism. Disorders of copper metabolism impact on neural signaling. The intracellular and extracellular concentrations of copper are tightly regulated. Pregabalin is a drug with multiple modes of action and has a high-affinity binding site for the alpha2delta subunit of voltage-gated calcium channels. METHODS Assessment of neuroprotective effects of pregabalin using cell culture, transcription studies, microdialysis and neurophysiological assessment in rats. RESULTS In vitro, copper decreased markedly the survival of neuronal cells and enhanced the production of nitric oxide (NO). Transcription of NO synthase (NOS) 1-3 and PGC-1a (a key regulator of mitochondrial biogenesis) was activated. In vivo, copper impaired the NMDA-mediated regulation of glutamate in the brain, increased the production of NO and enhanced markedly the excitability of the motor cortex. Pregabalin had antagonistic effects both in vitro and in vivo. CONCLUSION Our experiments highlight that pregabalin antagonizes the neurotoxic effects of copper. We argue that pregabalin exerts neuroprotective effects by silencing the overexcitability state induced by copper. We propose a possible use of pregabalin for treatment of disruption of copper homeostasis.
منابع مشابه
Pregabalin Antagonizes Copper-Induced Toxicity in the Brain: In vitro and in vivo Studies
Background: Copper plays key roles in brain metabolism. Disorders of copper metabolism impact on neural signaling. The intracellular and extracellular concentrations of copper are tightly regulated. Pregabalin is a drug with multiple modes of action and has a high-affinity binding site for the alpha2delta subunit of voltage-gated calcium channels. Methods: Assessment of neuroprotective effects ...
متن کاملHormesis Effects of Nano- and Micro-sized Copper Oxide
The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk m...
متن کاملRadioprotective efficacy of prunus avium fruit in mice brain with reference to in-vitro and in-vivo studies
Background: Radioprotective efficacy of Prunus avium fruit extract (PAE) rich in vitamin A, C, E and anthocyanin was studied against radiation induced biochemical alterations in mice brain. Materials and Methods: In-vitro assays were performed with PAE for its antioxidant studies thereafter for in-vivo study, Swiss albino mice were divided into five groups. Group 1 (control) normal mice. Group ...
متن کاملHormesis Effects of Nano- and Micro-sized Copper Oxide
The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk m...
متن کاملIn -vivo andIn -vitro antioxidant activity of Troxerutin on Nickel induced toxicity in Experimental Rats
The aim of the present study was to evaluate the effect of troxerutin (TXN) on Nickel (Ni) toxicity by using rats and in vitro model. Ni toxicity induced in male albino wistar rats (20 mg/kg body weight (b.w) was administered orally for 20 days). TXN was administered orally (100 mg/kg (b.w) for 20 days with administration of Ni. The toxic effect of Ni and the action of TXN was measure by determ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuro-Signals
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2010